vLLM
vLLM is a high-throughput serving engine for language models that optimizes inference performance through advanced memory management and batching techniques. It provides easy integration with popular model architectures while maximizing GPU utilization for production deployments.
The deployments in this document are for deploying Trinity-Nano-6B; however, they work the exact same for all Arcee AI models. To deploy a different model, simply change the model name to the model you'd like to deploy.
Docker Container for vLLM
Prerequisite
Sufficient VRAM (refer to Hardware Prerequisites)
A Hugging Face account
Docker and NVIDIA Container Toolkit installed on your instance
If you need assistance, see Install Docker Engine and Installing the NVIDIA Container Toolkit
Deployment
docker run --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=your_hf_token_here" \
-p 8000:8000 \
--ipc=host \
vllm/vllm-openai:latest \
--model arcee-ai/Trinity-Mini \
--dtype bfloat16 \
--enable-auto-tool-choice \
--reasoning-parser deepseek_r1 \
--port 8000 \
--tool-call-parser hermesManual Install using vLLM
Prerequisites
Sufficient VRAM (refer to Hardware Prerequisites)
A Hugging Face account
Deployment
Ensure your NVIDIA Driver is configured.
nvidia-smiIf information about your GPU is returned, skip this step. If not, run the following commands.
sudo apt update
sudo apt install -y ubuntu-drivers-common
sudo ubuntu-drivers install
sudo reboot
# Once you reconnect, check for correct driver configuration
nvidia-smiInstall necessary dev tools.
sudo apt install -y build-essential python3.12-devSetup a python virtual environment. In this guide, we'll use
uv.
curl -LsSf https://astral.sh/uv/install.sh | sh
source $HOME/.local/bin/env
uv venv --python 3.12 --seed
source .venv/bin/activateInstall necessary dev tools, vLLM, and Hugging Face.
uv pip install vllm --torch-backend=auto
uv pip install -U "transformers<4.55"
uv pip install --upgrade huggingface_hub[cli]
sudo apt-get install git-lfs
git lfs installLogin to your Hugging Face Account using a HF Access Token.
hf auth loginHost the model.
vllm serve arcee-train/Trinity-Mini \
--dtype bfloat16 \
--enable-auto-tool-choice \
--reasoning-parser deepseek_r1 \
--port 8000 \
--tool-call-parser hermesFor
max-model-lenyou can specify a context length of up to 65536For additional configuration options, see vLLM Configurations.
Run Inference using the Chat Completions endpoint.
curl http://Your.IP.Address:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "trinity",
"messages": [
{ "role": "user", "content": "What are the benefits of model merging" }
],
"temperature": 0.7,
"top_k": 50,
"repeat_penalty": 1.1
}'Last updated


